Swift笔记 - 13.闭包、捕获、局部作用域、成员重写、Swift指针及访问冲突
Swift笔记 - 13.闭包、捕获、局部作用域、成员重写、Swift指针及访问冲突
闭包中的捕获列表
- 闭包表达式默认会对用到的外层对象产生额外的强引用(对外层对象进行了
retain
操作) - 下面代码会产生循环引用,导致
Person
对象无法释放(看不到Person
的deinit
被调用)
class Person {
var fn: (() -> ())?
func run() { print ("run") }
deinit { print ("deinit") }
}
func test() {
let p = Person()
p.fn = { p.run0) }
}
test ()
- 在闭包表达式的捕获列表声明weak或unowned引用,解决循环引用问题
p.fn = { [weak p] in
p?.run()
}
p.fn = { [unowned p] in
p. run()
}
p.fn = { [weak wp = p, unowned up = p, a = 10 + 20] in
wp?.run()
}
- 如果想在定义闭包属性的同时引用
self
,这个闭包必须是lazy
的(因为在实例初始化完毕之后才能引用self
)- 下边的闭包fn内部如果用到了实例成员(属性、方法)
- 编译器会强制要求明确写出
self
class Person {
lazy var fn: (() = { [weak self] in
self?.run()
}
func run() { print ("run") }
deinit { print ("deinit") }
}
- 如果
Lazy
属性是闭包调用的结果,那么不用考虑循环引用的问题(因为闭包调用后,闭包的生命周期就结束了)
class Person {
var age: Int = 0
lazy var getAge: Int = {
self.age
}()
deinit { print ("deinit") }
}
非逃逸与逃逸闭包
- 非逃逸闭包、逃逸闭包,一般都是当做参数传递给函数
- 非逃逸闭包:闭包调用发生在函数结束前,闭包调用在函数作用域内
- 逃逸闭包:闭包有可能在函数结束后调用,闭包调用逃离了函数的作用域,需要通过
@escaping
声明
import Dispatch
typealias Fn = 0) -> ()
//fn是非选逸闭包
func test1(_ fn: Fn) { fn() }
//fn是选逸闭包
var gFn: Fn?
func test2(_ fn: @escaping Fn) { gFn = fn }
//fn是选逸闭包
func test3(_ fn: @escaping Fn) {
DispatchQueue.global().async {
fn()
}
}
class Person {
var fn: Fn
//fn是选逸朗包
init(fn: @escaping Fn) {
self.fn = fn
}
func run() {
//Dispatchoueue.global().async也是一个逃逸闭包
//它用到了实例成员(属性、方法),编译器会强制要求明确写出self
DispatchQueue.global().async {
self.fn()
}
}
}
- 逃逸闭包不可以捕获inout参数
typealias Fn = () -> ()
func other1(_ fn: Fn) { fn() }
func other2(_ fn: @escaping Fn) { fn() }
func test (value: inout Int) -> Fn {
other1 { value -= 1 }
//error:逃逸闭包不能捕获inout参数
other2 { valve += 1 }
func plus(){ value += 1 }
//error:逃逸闭包不能捕获inout参数
return plus
}
}
局部作用域
- 可以使用do实现局部作用域
do {
let dog1 = Dog()
dog1.age = 10
dog1.run()
}
do {
let dog2 = Dog()
dog2.age = 10
dog2.run()
}
成员的重写
- 子类重写成员的访问级别必须
≥
子类的访问级别,或者≥
父类被重写成员的访问级别 - 父类的成员不能被成员作用域外定义的子类重写
public class Person {
private var age: Int = 0
}
public class Student : Person {
override var age: Int {
set {}
get {10}
}
}
public class Person {
private var age: Int = 0
public class Student : Person {
override var age: Int {
set {}
get {10}
}
}
}
存在内存访问冲突
- 内存访问冲突会在两个访问满足下列条件时发生:
- 至一个是写入操作
- 它们访问的是同一块内存
- 它们的访问时间重疊(比如在同一个西数内)
//不存在内存访问冲突
func plus(_ num: inout Int) -> Int { num + 1 }
var number = 1
number = plus(&number)
//存在内存访问冲突
// Simultaneous accesses to 0x0, but modification requires exclusive access
var step = 1
func increment(_ num: thout Int) { num += step }
increment(&step)
//解决内存访问冲突
var copyOfStep = step
increment (©OfStep)
step = copyOfStep
func balance(_ x: inout Int, _ y: inout Int) {
let sum = x + y
y = sum / 2
x = sum - x
}
var num1 = 42
var num2 = 30
balance(&num1, &num2) // OK
balance(&num1, &num1) // Error
struct Player {
var name: String
var health: Int
var energy: Int
mutating func shareHealth(with teammate: inout Player) {
balance (&teammate.health, Shealth)
}
}
var oscar = Player(name: "Oscar", health: 10, energy: 10)
var maria = Player(name: "Maria", health: 5, energy: 10)
oscar.shareHealth(with: Smaria) // OK
oscar.shareHealth(with: Soscar) // Error
var tulpe = (health: 10, energy: 20)
// Error
balance(&tulpe. health, &tulpe.energy)
var holly = Player(name: "Holly", health: 10, energy: 10)
// Error
balance(&holly.health, &holly.energy)
- 如果下面的条件可以满足,就说明重叠访问结构体的属性是安全的
- 你只访问实例存储属性,不是计算属性或者类属性
- 结构体是局部变量而非全局变量
- 结构体要么没有被闭包捕获要么只被非逃逸闭包捕获
// Ok
func test() {
var tulpe = (health: 10, energy: 20)
balance(&tulpe.health, &tulpe.energy)
var holly = Player(name: "Holly", health: 10, energy: 10)
balance(&holly.health, &holly.energy)
}
test()
Swift当中的指针
- Swift中也有专门的指针类型,这些都被定性为“
Unsafe
”(不安全的),常见的有以下4种类型UnsafePointer<Pointee>
类似于const Pointee *
UnsafeMutablePointer<Pointee>
类似于Pointee *
UnsafeRawPointer
类似于const void *
UnsafeMutableRawPointer
类似于void *
var age = 10
func test1(_ pt: UnsafeMutablePointer<Int>) {
ptr.pointee += 10
}
func test2(_ ptr: UnsafePointer<Int>) {
print (ptr.pointee)
}
test1(&age)
test2(&age) // 20
print(age) // 20
var age = 10
func test3(_ pt: UnsafeMutableRawPointer)
ptr.storeBytes(of: 20, as: Int.self)
}
func test4(_ ptr: UnsafeRawPointer) {
print (ptr. load (as: Int.self))
}
test3(&age)
test4(&age) // 20
print(age) // 20
var arr = NSArray(objects: 11, 22, 33, 44)
arr.enumerateObjects { (obj, idx, stop) in
print(idx, obj)
if idx == 2 { // 下标为2就停止遍历
stop. pointee = true
}
}
var arr = NSArray (objects: 11, 22, 33, 44)
for (idx, obj) in arr.enumerated() {
print(idx, obi)
if idx == 2 {
break
}
}
var arr = NSArray(objects: 11, 22, 33, 44)
for (idx, element) in arr.enumerated() {
print(idx, element)
if idx == 2 { break }
}
获得某个变量的指针
var age = 11
var ptr1 = withUnsafeMutablePointer(to: &age) { $0 }
var ptr2 = withUnsafePointer(to: &age) { $0 }
ptr1.pointee = 22
print (ptr2.pointee) // 22
print (age) // 22
var ptr3 = withUnsafeMutablePointer(to: &age) { UnsafeMutableRawPointer($0) }
var ptr4 = withUnsafePointer(to: &age) { UnsafeRawPointer($0) }
ptr3.storeBytes (of: 33, as: Int.self)
print(ptr4.load(as: Int.self)) // 33
print(age) // 33
获得指向堆空间实例的指针
class Person {}
var person = Person()
var ptr = withUnsafePointer(to: &person) { UnsafeRawPointer($0) }
var heapPtr = UnsafeRawPointer(bitPattern: ptr.load(as: UInt.self))
print(heapPtr!)
创建指针
var ptr = UnsafeRawPointer(bitPattern: 0x100001234)
// 创建
var ptr = malloc(16)
// 存
ptr?.storeBytes(of: 11, as: Int.self)
ptr?.storeBytes (of: 22, toByteOffset: 8, as: Int.self)
print((ptr?.load(as: Int.self))!) // 11
print((ptr?.load(fromByteOffset: 8, as: Int.self))!) // 22
//销毁
free (ptr)
var ptr = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1)
ptr.storeBytes(of: 11, as: Int.self)
ptr.advanced(by: 8).storeBytes (of: 22, as: Int.self)
print(ptr. load(as: Int.self)) // 11
print(ptr.advanced (by: 8).load(as: Int.self)) // 22
ptr.deallocate()
var ptr = UnsafeMutablePointer<Int>.allocate(capacity: 3)
ptr.initialize(to: 11)
ptr.successor().initialize(to: 22)
ptr.successor().successor().initialize(to: 33)
print(ptr.pointee) // 11
print ((ptr + 1).pointee) // 22
print ((ptr + 2).pointee) // 33
print (ptr [0]) // 11
print (ptr(1]) // 22
print (ptr[2]) // 33
ptr.deinitialize(count: 3)
ptr.deallocate()
class Person {
var age: Int
var name: String
init(age: Int, name: String) {
self.age = age
self.name = name
}
deinit ( print (name, "deinit")
}
var ptr = UnsafeMutablePointer<Person>.allocate(capacity: 3)
ptr.initialize(to: Person(age: 10, name: "Jack"'))
(ptr + 1).initialize(to: Person(age: 11, name: "Rose"))
(ptr + 2).initialize(to: Person(age: 12, name: "Kate"))
// Jack deinit
// Rose deinit
// Kate deinit
ptr.deinitialize(count: 3) //反初始化
Iptr.deallocate()
指针之间的转换
var ptr = UnsafeMutableRawPointer.allocate(byteCount: 16, alignment: 1)
ptr.assumingMemoryBound(to: Int.self).pointee = 11
(ptr + 8).assumingMemoryBound(to: Double.self).pointee = 22.0
print(unsafeBitCast(ptr, to: UnsafePointer<Int>.self).pointee) // 11
print(unsafeBitCast(ptr + 8, to: UnsafePointer<Double>.self).pointee) // 22.0
ptr.deallocate()
unsafeBitcast
是忽略数据类型的强制转换,不会因为数据类型的变化而改变原来的内存数据- 类似于C++中的
reinterpret_cast
- 类似于C++中的
class Person {}
var person = Person()
//personobjectAddress存储的就是堆仝甸地址
var personObjectAddress = unsafeBitCast(person, to: UInt.self)
print(UnsafeRawPointer(bitPattern: personObjectAddress)!)
class Person {}
var person = Person()
var ptr = unsafeBitCast(person, to: UnsafeRawPointer.self)
print(ptr)